1. Calculate the pH of a buffer solution that contains 0.25 M benzoic acid (C_6H_5COOH) and 0.15 M sodium benzoate (C_6H_5COONa). Given K_a = 6.5 \times 10^{-5} for benzoic acid.

\[
\text{pH} = \text{p}K_a + \log \frac{[C_6H_5COO^-]}{[C_6H_5COOH]}
\]

A. 3.97
B. 4.83
C. 4.19
D. 3.40
E. 4.41

2. A solution is prepared by mixing 500 mL of 0.10 M NaOCl and 500 mL of 0.20 M HOCI. What is the pH of this solution? K_a(HOCI) = 3.2 \times 10^{-8}

\[
\frac{[OH^-]}{[HOCI]} = 10^{\text{pH} - 7}
\]

A. 4.10
B. 7.00
C. 7.19
D. 7.49
E. 7.80

3. The pH at the equivalence point of a titration may differ from 7.0 because of

A. the initial concentration of the standard solution.
B. the indicator used.
C. the self-ionization of H_2O.
D. the initial pH of the unknown.
E. hydrolysis of the salt formed.

4. For which type of titration will the pH be basic at the equivalence point?

A. Strong acid vs. strong base.
B. Strong acid vs. weak base.
C. Weak acid vs. strong base.
D. All of the above.
E. None of the above.

5. What is the pH at the equivalence point in the titration of 100 mL of 0.10 M HCl with 0.10 M NaOH?

A. 1.0
B. 6.0
C. 7.0
D. 8.0
E. 13.0

6. For PbCl_2, K_{sp} = 2.4 \times 10^{-4}, will a precipitate of PbCl_2 form when 0.10 L of 3.0 \times 10^{-2} M Pb(NO_3)_2 is added to 400 mL of 9.0 \times 10^{-2} M NaCl? Choose one of the following.

\[
Q_{eq} = [Pb^{2+}][Cl^-]^2
\]

A. Yes, Q > K_{sp}
B. No, Q < K_{sp}
C. No, Q = K_{sp}
D. Yes, Q < K_{sp}
E. \geq 7.1 \times 10^{-5}

7. The molar solubility of MgCO_3 is 1.8 \times 10^{-4} mol/L. What is K_{sp} for this compound?

\[
K_{sp} = [Mg^{2+}][CO_3^{2-}]
\]

A. 1.8 \times 10^{-4}
B. 3.6 \times 10^{-4}
C. 1.3 \times 10^{-7}
D. 3.2 \times 10^{-7}
E. 2.8 \times 10^{-14}

8. The molar solubility of tin iodide (SnI_2) is 1.28 \times 10^{-2} mol/L. What is K_{sp} for this compound?

\[
K_{sp} = [Sn^{2+}][I^-]^2
\]

A. 8.4 \times 10^{-6}
B. 1.28 \times 10^{-2}
C. 4.2 \times 10^{-6}
D. 1.6 \times 10^{-4}
E. 2.1 \times 10^{-6}
9. The Ksp for Ag₃PO₄ is 1.8×10^{-18}. Determine the Ag⁺ ion concentration in a saturated solution of Ag₃PO₄.

A. 1.6×10^{-5} M
B. 2.1×10^{-5} M
C. 3.7×10^{-5} M
D. 1.1×10^{-13} M
E. 4.8×10^{-5} M

10. Which of the following would decrease the Ksp for PbI₂?

A. Lower the pH of the solution
B. Add a solution of Pb(NO₃)₂
C. Add a solution of KI
D. None of the above—the Ksp of a compound is constant at constant temperature.

11. Calculate the minimum concentration of Mg²⁺ that must be added to 0.10 M NaF solution in order to initiate a precipitate of magnesium fluoride. For MgF₂, Ksp = 6.9×10^{-9}.

A. 1.4×10^{-7} M
B. 6.9×10^{-9} M
C. 6.9×10^{-8} M
D. 1.7×10^{-7} M
E. 6.9×10^{-7} M

12. Arrange the following compounds in order of increasing standard molar entropy at 25°C:

$\text{C}_4\text{H}_6(g), \text{C}_2\text{H}_4(g), \text{ZnS}(s), \text{and} \text{H}_2\text{O}(l)$.

A. ZnS(s) < H₂O(l) < C₃H₆(g) < C₂H₄(g)
B. C₂H₄(g) < H₂O(l) < C₃H₆(g) < NaCl(s)
C. ZnS(s) < C₂H₄(g) < C₃H₆(g) < H₂O(l)
D. C₃H₆(g) < C₂H₄(g) < H₂O(l) < ZnS(s)
E. ZnS(s) < H₂O(l) < C₂H₄(g) < C₃H₆(g)
13. Which response includes all the following processes that are accompanied by an increase in entropy?

1. \(2\text{SO}_3(g) + \text{O}_2(g) \rightarrow \text{SO}_2(g) \)
2. \(\text{H}_2\text{O}(l) \rightarrow \text{H}_2\text{O}(s) \)
3. \(\text{Br}_2(l) \rightarrow \text{Br}_2(g) \)
4. \(\text{H}_2\text{O}_2(l) \rightarrow \text{H}_2\text{O}(l) + \frac{1}{2}\text{O}_2(g) \)

A. 1, 2, 3, 4
B. 1, 2
C. 2, 3, 4
D. 3, 4
E. 1, 4

14. Given the equation for the reduction of \(\text{PbO}(s) \):

\[2\text{PbO}(s) + \text{C}(s) \rightarrow 2\text{Pb}(s) + \text{CO}_2(g) \]

Calculate \(\Delta S^\circ \) for this reaction at 25°C, given the following absolute entropies:

\[
\Delta S = \sum S_{\text{products}} - \sum S_{\text{reactants}}
\]

\[
\begin{align*}
\text{PbO}(s) & : 69.45 \\
\text{C}(s) & : 5.7 \\
\text{Pb}(s) & : 64.89 \\
\text{CO}_2(g) & : 213.6
\end{align*}
\]

\(\Delta S^\circ = +198.8 \text{ J/K} \)

15. A negative sign for \(\Delta G \) indicates that, at constant \(T \) and \(P \),

A. the reaction is exothermic.
B. the reaction is endothermic.
C. the reaction is fast.
D. the reaction is spontaneous.
E. \(\Delta S \) must be > 0.
16. Calculate ΔG° for the following reaction

$3\text{NO}_2(g) + \text{H}_2\text{O}(l) \rightarrow 2\text{HNO}_3(l) + \text{NO}(g)$

Given the following free energies of formation:

$\Delta G^\circ \text{(kJ/mol)}$

$\begin{align*}
\text{H}_2\text{O}(l) & : -237.2 \\
\text{HNO}_3(l) & : -79.9 \\
\text{NO}(g) & : 86.7 \\
\text{NO}_2(g) & : 51.8
\end{align*}$

A. 8.7 kJ
B. 192 kJ
C. -414 kJ
D. -192 kJ
E. -155 kJ

17. For the reaction $\text{H}_2(g) + \text{S}(s) \rightarrow \text{H}_2\text{S}(g)$

$\Delta H^\circ = -20.2 \text{ kJ}$ and $\Delta S^\circ = +43.1 \text{ JK}^{-1}\text{K}$. Which of the following statements is true?

A. The reaction is only spontaneous at low temperatures.
B. The reaction is spontaneous at all temperatures.
C. ΔG° becomes less favorable as temperature increases.
D. The reaction is spontaneous only at high temperatures.
E. The reaction is at equilibrium at 25°C under standard conditions.

18. Calculate K_p for the reaction below at 298 K.

$\text{SO}_2(g) + \text{NO}_2(g) \rightarrow \text{SO}_3(g) + \text{NO}(g)$

Given the following free energies of formation:

$\Delta G^\circ \text{(kJ/mol)}$

$\begin{align*}
\text{SO}_2(g) & : -300.4 \\
\text{SO}_3(g) & : -370.4 \\
\text{NO}(g) & : 86.7 \\
\text{NO}_2(g) & : 51.8
\end{align*}$

A. 6.99×10^{-7}
B. 5.71×10^{-8}
C. 14.2
D. 475
E. 1.43×10^6
19. Given the following notation for an electrochemical cell

\[
\text{Pt(s)} \mid \text{H}_2(g) \mid \text{H}^+(aq) \mid \text{Ag}^+(aq) \mid \text{Ag(s)}
\]

what is the balanced overall (net) cell reaction?

A. \(2\text{H}^+(aq) + 2\text{Ag}^+(aq) \rightarrow \text{H}_2(g) + 2\text{Ag}(s)\)
B. \(\text{H}_2(g) + 2\text{Ag}(s) \rightarrow \text{H}^+(aq) + 2\text{Ag}^+(aq)\)
C. \(2\text{H}^+(aq) + 2\text{Ag}(s) \rightarrow \text{H}_2(g) + 2\text{Ag}^+(aq)\)
D. \(\text{H}_2(g) + \text{Ag}^+(aq) \rightarrow \text{H}^+(aq) + \text{Ag}(s)\)
E. \(\text{H}_2(g) + 2\text{Ag}^+(aq) \rightarrow 2\text{H}^+(aq) + 2\text{Ag}(s)\)

20. A certain electrochemical cell has for its cell reaction:

\[\text{Zn} + \text{HgO} \rightarrow \text{ZnO} + \text{Hg}\]

Which is the half-reaction occurring at the anode?

A. \(\text{HgO} + 2e^- \rightarrow \text{Hg} + \text{O}^{2-}\)
B. \(\text{Zn}^{2+} + 2e^- \rightarrow \text{Zn}\)
C. \(\text{Zn} \rightarrow \text{Zn}^{2+} + 2e^-\)
D. \(\text{ZnO} + 2e^- \rightarrow \text{Zn}\)

21. For the reaction

\[\text{Ni}^{2+}(aq) + 2\text{Fe}^{3+}(aq) \rightarrow \text{Ni}(s) + 2\text{Fe}^{2+}(aq)\]

The standard cell potential \(E^\circ_{\text{cell}}\) is

A. +2.81 V
B. +1.02 V
C. +0.52 V
D. -1.02 V
E. -2.81 V

22. In the following half-equation, which is the oxidizing agent?

\[\text{NO}_3^-(aq) + 4\text{H}^+(aq) + 3e^- \rightarrow 2\text{NO}(g) + 2\text{H}_2\text{O}\]

A. \(\text{NO}_3^-\)
B. \(\text{H}^+\)
C. \(e^-\)
D. \(\text{NO}\)
E. \(\text{H}_2\text{O}\)
23. Given the following standard reduction potentials in acid solution

\[
\begin{align*}
E^\circ(V) & \quad \text{Reactions} \\
-1.66 & \quad \text{Al}^{3+} + 3e^- \rightarrow \text{Al}(s) \\
+0.07 & \quad \text{AgBr}(s) + e^- \rightarrow \text{Ag}(s) + \text{Br} \\
+0.14 & \quad \text{Sn}^{4+} + 2e^- \rightarrow \text{Sn}^{2+} \\
+0.77 & \quad \text{Fe}^{2+} + \text{e}^- \rightarrow \text{Fe}^{3+}
\end{align*}
\]

The strongest oxidizing agent among those shown above is
A. \(\text{Fe}^{3+} \) \\
B. \(\text{Fe}^{2+} \) \\
C. \(\text{Br}^- \) \\
D. \(\text{Al}^{3+} \) \\
E. \(\text{Al} \)

24. Which of the following reagents is capable of transforming \(\text{Cu}^{2+}(1 \text{ M}) \) to \(\text{Cu}(s) \)?
A. \(\text{I}^- (\text{aq}) \) \\
B. \(\text{N}(\text{s}) \) \\
C. \(\text{Al}^{3+}(1 \text{ M}) \) \\
D. \(\text{F}^- (1 \text{ M}) \) \\
E. \(\text{Ag}(\text{s}) \)

25. Which of the following species is the strongest oxidizing agent under standard state conditions?
A. \(\text{Ag}^+(\text{aq}) \) \\
B. \(\text{H}_2(\text{g}) \) \\
C. \(\text{H}^+(\text{aq}) \) \\
D. \(\text{Cl}_2(\text{g}) \) \\
E. \(\text{Al}^{3+}(\text{aq}) \)

26. Calculate the cell emf for the following reaction:
\[
\text{Ni}(s) + 2\text{Cu}^+(0.010 \text{ M}) \rightarrow \text{Ni}^{2+}(0.0010 \text{ M}) + 2\text{Cu}(s)
\]
A. 0.40 V \\
B. -0.43 V \\
C. 0.43 V \\
D. 0.34 V \\
E. 0.37 V

27. A metal object is to be gold-plated by an electrolytic procedure using aqueous AuCl₃ electrolyte. Calculate the number of moles of gold deposited in 3.0 min by a constant current of 10 A.
A. 6.2 \times 10^{-3} \text{ mol} \\
B. 9.0 \times 10^{-3} \text{ mol} \\
C. 1.8 \times 10^{-2} \text{ mol} \\
D. 3.5 \times 10^{-2} \text{ mol} \\
E. 160 \text{ mol}

28. Aluminium does not corrode as does iron, because
A. \(\text{Al} \) does not react with \(\text{O}_2 \) \\
B. A protective layer of \(\text{Al}_2\text{O}_3 \) forms on the metal surface \\
C. \(\text{Al} \) is harder to oxidize than is \(\text{Fe} \) \\
D. \(\text{Fe} \) gives cathodic protection to \(\text{Al} \) \\
E. The electrical circuit cannot be completed on an \(\text{Al} \) surface.

Page 6
29. Complete and balance the following redox equation. When properly balanced with whole number coefficients, the coefficient of S is

$$\text{H}_2\text{S} + \text{HNO}_3 \rightarrow \text{S} + \text{NO} \quad \text{(acidic solution)}$$

A. 1 B. 2 C. 3 D. 5 E. 6

30. Complete and balance the following redox equation. What is the coefficient of H$_2$O when the equation is balanced with the set of smallest whole numbers?

$$\text{MnO}_4^- + \text{SO}_3^{2-} \rightarrow \text{Mn}^{2+} + \text{SO}_4^{2-} \quad \text{(acidic solution)}$$

A. 3 B. 4 C. 5 D. 8 E. None of the above

31. Complete and balance the following redox equation. What is the coefficient of H$_2$O when the equation is balanced with the set of smallest whole numbers?

$$\text{H}_2\text{O} + \text{MnO}_4^- + \text{I}^- \rightarrow \text{MnO}_2 + \text{IO}_3^- \quad \text{(basic solution)}$$

A. 1 B. 2 C. 4 D. 10 E. None of the above

32. Which choice gives the correct oxidation numbers for all three elements in Rb$_2$SO$_3$ in the order that the elements are shown in the formula?

A. -2, +6, -2 B. -1, +4, -3 C. +2, +4, -2 D. +1, +6, -6 E. None of the above

33. Which one of the following is a redox reaction?

A. $\text{H}^+ (aq) + \text{OH}^- (aq) \rightarrow \text{H}_2\text{O}(l)$
B. $2\text{KBr(aq)} + \text{Pb(NO}_3)_2(aq) \rightarrow 2\text{KNO}_3(aq) + \text{PbBr}_2(s)$
C. $\text{CaBr}_2(aq) + \text{H}_2\text{SO}_4(aq) \rightarrow \text{CaSO}_4(s) + 2\text{HBr}(g)$
D. $2\text{Al(s)} + 3\text{H}_2\text{SO}_4(aq) \rightarrow \text{Al}_2\text{(SO}_4)_3(aq) + 3\text{H}_2(g)$
E. $\text{CO}_3^{2-} (aq) + \text{HSO}_4^-(aq) \rightarrow \text{HCO}_3^- (aq) + \text{SO}_4^{2-} (aq)$
34. In the following chemical reaction the oxidizing agent is:

\[\text{H}_2\text{O}_2 + 2\text{MnO}_4^- + 6\text{H}^+ \rightarrow 2\text{Mn}^{2+} + 3\text{H}_2\text{O} + 5\text{O}_2 \]

A. H\(_2\)O\(_2\)
B. MnO\(_4^-\)
C. H\(^+\)
D. Mn\(^{2+}\)
E. O\(_2\)