Mat 241 Homework Set 8 – Due ______________

Professor David Schultz

Directions: Show all algebraic steps neatly and concisely using proper mathematical symbolism. When graphs and technology are to be implemented, do so appropriately.

Mechanics:

For the following two integrals do the following:

A. Sketch the region of integration for the two integrals shown.
B. Compute the integrals in 1 & 2 exactly.
C. Write each integral with the order of integration reversed and then compute each of the “new” integrals.

1.

\[
\int_0^2 \int_0^{\frac{1}{2}} \left(x + y \right) dxdy
\]

\[
= \int_0^2 \left[\frac{x^2}{2} + yx \right]_{\frac{1}{2}}^{\frac{1}{2}} dy = \int_0^2 \left(\frac{1}{2} + y - \frac{5y^2}{8} \right) dy = \left[\frac{y}{2} + \frac{y^2}{2} - \frac{5y^3}{24} \right]_0^1 = \frac{4}{3}
\]

\[
\int_0^2 \int_0^{\frac{1}{2}} \left(x + y \right) dxdy = \int_0^{\frac{1}{2}} \int_0^{2x} \left(x + y \right) dydx
\]

\[
= \int_0^1 \left[xy + \frac{y^2}{2} \right]_{\frac{1}{2}}^{2x} dx = \int_0^1 \left(4x^2 \right) dx = \left[\frac{4x^3}{3} \right]_0^1 = \frac{4}{3}
\]
For the following two integrals do the following:

D. Sketch the region of integration.
E. Write each integral with the order of integration reversed.
F. Compute each of the “new” integrals. Hint: On #4 utilize a Taylor series using the first 6 terms to approximate one part of the region.

\[
\int_{0}^{1} \int_{0}^{\sqrt{1-y^2}} y \, dx \, dy = \int_{0}^{\frac{\pi}{4}} \int_{0}^{\sqrt{2}} r \sin \theta \, dr \, d\theta
\]

= \int_{0}^{\frac{\pi}{4}} \frac{\sin \theta}{2} \left[\sqrt{2} \cdot \sin \frac{\theta}{2} \right] d\theta = \frac{\pi}{8} \left(1 - \frac{\pi}{2}\right) = \frac{1}{3}

For the following two integrals do the following:

\[
\int_{0}^{1} \int_{0}^{\sqrt{1-x^2}} y \, dy \, dx = \int_{0}^{1} \frac{\sqrt{1-x^2}}{2} \left[\frac{x}{2} \right] dx = \frac{1}{2} \left(\frac{1}{3} - \frac{x^3}{3}\right)^{\frac{1}{4}} = \frac{1}{3}
\]

3. \[
\int_{\frac{4}{\ln y}}^{4} \frac{1}{\ln y} \, dy = \int_{e^{\frac{1}{4}}}^{4} \frac{1}{\ln y} \, dy = \int_{1}^{4} \frac{x}{\ln y} \, dy = \int_{2}^{6} 2dy = 6
\]
4.
\[
\begin{align*}
\int_0^1 \int_0^2 \frac{e^x}{\sqrt{x}} \, dy \, dx &= \int_0^1 e^x \, dy \int_0^2 \frac{1}{\sqrt{x}} \, dx = \int_0^1 \frac{e^x}{1} \, dy \int_0^2 \frac{1}{\sqrt{x}} \, dx \\
&= \left[e^x \right]_1^2 + \left[\frac{e^x}{\sqrt{x}} \right]_1^2 = e - 1 + \frac{e}{\sqrt{2}} - \frac{1}{\sqrt{2}} + \frac{x^2}{2\sqrt{x}} + \ldots \, dx \\
&= e - 1 + \int_1^2 \left(\frac{1}{\sqrt{x}} + \frac{x^2}{2\sqrt{x}} + \frac{x^3}{6\sqrt{x}} \right) \, dx \\
&\to e - 1 + 3.470 \\
\therefore &\quad e + 2.47
\end{align*}
\]

Concept development and applications.

#5. Use a CAS to compute the following two integrals showing that they are not the same. Why doesn’t this contradict Fubini’s Theorem?

\[
\begin{align*}
\int_0^1 \int_0^1 (x - y) \, dy \, dx &\quad \text{and} \quad \int_0^1 \int_0^1 (x - y) \, dx \, dy \\
\text{The function has an infinite discontinuity at the origin so Fubini’s Theorem does not apply.}
\end{align*}
\]

Can you compute these by hand?(not required)

#6. The order of integration in a double integral is largely a matter of choice but sometimes the order can be the difference between a straightforward evaluation as opposed to a very difficult if not impossible evaluation.

Consider the function \(f(x, y) = x \cos(xy) \) on \(R = \left[0, \frac{\pi}{2} \right] \times [0,1] \).
A. Integrate the function over the specified region with respect to y first (i.e. dydx).

\[f(x, y) = x \cos(xy) \text{ on } R = \left[0, \frac{\pi}{2}\right] \times [0, 1]. \]

\[
\int_0^\frac{\pi}{2} \int_0^1 x \cos(xy) \, dy \, dx = \int_0^\frac{\pi}{2} \left(\sin(xy) \right)_0^1 \, dx = \int_0^\frac{\pi}{2} \sin(x) \, dx = -\cos(x) \bigg|_0^{\frac{\pi}{2}} = 1
\]

B. Integrate the function over the specified region with respect to x first and indicate when the difficulty arises. (i.e. dxdy).

\[f(x, y) = x \cos(xy) \text{ on } R = \left[0, \frac{\pi}{2}\right] \times [0, 1]. \]

\[
\int_0^1 \int_0^{\frac{\pi}{2}} x \cos(xy) \, dx \, dy = \int_0^1 \left(\frac{x \sin(xy)}{y} \right)_0^{\frac{\pi}{2}} - \int_0^{\frac{\pi}{2}} \frac{\sin(xy)}{y} \, dx \, dy = \int_0^1 \left(\frac{x \sin(xy)}{y} \right)_0^{\frac{\pi}{2}} + \frac{\cos(xy)}{y^2} \bigg|_0^{\frac{\pi}{2}} \, dy \rightarrow
\]

\[
= \int_0^1 \frac{\pi \sin\left(\frac{\pi y}{2}\right)}{y} \, dy + \int_0^1 \left(\frac{\cos\left(\frac{\pi y}{2}\right)}{y^2} - \frac{1}{y^2} \right) \, dy
\]

\[
= \int_a^b \frac{\sin(y)}{y} \, dy \quad \text{/* is not an elementary integral.}
\]
#7. A rectangular plate of sides lengths a and b is subjected to a normal force (that is perpendicular to the plate). The pressure, p, at any point on the plate is proportional to the square of the distance of that point from one corner. Find the total force on the plate [Note: Pressure is force per unit area].

\[
F = \int_0^a \int_0^b k \left(x^2 + y^2 \right) dy dx = k \int_0^a \left(x^2 y + \frac{y^3}{3} \right) dx = k \left(\frac{x^3 b}{3} + \frac{b^3}{3} \right) \bigg|_0^a = abk \left(\frac{a^2 + b^2}{3} \right)
\]

#8. Find the volume of the solid bounded by the paraboloid $z = 9x^2 + y^2$ above, by the plane $z = 0$ below, and laterally by the planes $x = 0$, $y = 0$, $x = 3$, and $y = 2$. Sketch the Region in the xy – plane and indicate your directions of integrations.

\[
V = \int_0^3 \int_0^2 \left(9x^2 + y^2 \right) dx dy = \int_0^3 \left(3x^3 + y^2 x \right) \bigg|_0^2 dy = \int_0^3 \left(81 + 3y^2 \right) dy = 170
\]
#9. Find the volume of the solid bounded by the two surfaces. Sketch the Region in the xy – plane and indicate your directions of integrations.

\[z = x^2 + 3y^2 \text{ & } z = 4 - y^2. \]

\[f(x, y) = 4 - y^2 - (x^2 + 3y^2) = 4 - x^2 - 4y^2; x^2 + 3y^2 = 4 - y^2 \iff \frac{x^2}{4} + \frac{y^2}{1} = 1 \]

\[V = 4 \int_0^{2\sqrt{1-y^2}} \int_0^{\sqrt{1-y^2}} (4 - x^2 - 4y^2) dx dy = 4 \int_0^{\sqrt{1-y^2}} \left(4x - \frac{x^3}{3} - 4y^2x \right) dy \]

\[= 4 \int_0^{\sqrt{1-y^2}} \left(8\sqrt{1-y^2} - \frac{8(1-y^2)\sqrt{1-y^2}}{3} - 8y^2\sqrt{1-y^2} \right) dy \]

\[= \frac{32}{3} \int_0^{\sqrt{1-y^2}} \left(2\sqrt{1-y^2} - 2y^2\sqrt{1-y^2} \right) dy \]

\[= \frac{64}{3} \int_0^{\sqrt{1-y^2}} \left(\sqrt{1-y^2}^2 - y^2\sqrt{1-y^2} \right) dy \]

\[= \frac{64}{3} \int_0^{\sqrt{1-y^2}} (\cos^2 \theta - \sin^2 \theta \cos^2 \theta) d\theta = \frac{64}{3} \int_0^{\sqrt{1-y^2}} \cos^4 \theta d\theta \quad \text{/* } y = \sin \theta \]

\[\Rightarrow \frac{64}{3} \int_0^{\sqrt{1-y^2}} \cos^4 \theta d\theta = \frac{64}{3} \left(\frac{3\theta}{8} + \frac{\sin(2\theta)}{4} + \frac{\sin(4\theta)}{32} \right) \bigg|_0^{\sqrt{1-y^2}} \]

\[= 4\pi \]
#10. Find the volume of the solid formed by the two paraboloids $z = x^2 + 3y^2$ \& $z = 9 - 2x^2 - y^2$. Sketch the Region in the xy – plane and indicate your directions of integrations.

\[f(x, y) = 9 - 3x^2 - 4y^2; \quad \frac{x^2}{3} + \frac{y^2}{9} = 1 \]

\[V = \int_0^3 \int_0^{\sqrt[3]{9-4y^2}} \left(9 - 3x^2 - 4y^2\right) \, dx \, dy = \int_0^{\frac{3}{\sqrt{3}}} \left(9x - x^2 - 4y^2\right) \frac{1}{\sqrt[3]{9-4y^2}} \, dy \]

\[= \int_0^{\frac{3}{\sqrt{3}}} \left(9\sqrt{9-4y^2} - \frac{(9 - 4y^2)\sqrt{9-4y^2}}{3\sqrt{3}} - \frac{4y^2\sqrt{9-4y^2}}{\sqrt{3}}\right) \, dy \]

\[= \frac{4}{3\sqrt{3}} \int_0^{\frac{3}{\sqrt{3}}} (18\sqrt{9-4y^2} - 8y^2\sqrt{9-4y^2}) \, dy \quad \text{/let } u = 2y \]

\[= \frac{4}{3\sqrt{3}} \int_0^3 (9\sqrt{9-u^2} - u^2\sqrt{9-u^2}) \, dy \quad \text{/let } u = 3\sin \theta \]

\[= \frac{4}{3\sqrt{3}} \int_0^{\frac{\pi}{2}} 81\left(\cos^2 \theta - \sin^2 \theta \cos^2 \theta\right) \, d\theta = \frac{108}{\sqrt{3}} \int_0^{\frac{\pi}{2}} \cos^4 \theta \, d\theta \]

\[* \int_0^{\frac{\pi}{2}} \cos^4 \theta \, d\theta = \frac{3\theta}{8} + \frac{\sin(2\theta)}{4} + \frac{\sin(4\theta)}{32} + C \]

\[\Rightarrow \frac{108}{\sqrt{3}} \int_0^{\frac{\pi}{2}} \cos^4 \theta \, d\theta = \frac{108}{\sqrt{3}} \left(\frac{3\theta}{8} + \frac{\sin(2\theta)}{4} + \frac{\sin(4\theta)}{32}\right)_{\frac{\pi}{2}}^0 = \frac{27\sqrt{3}\pi}{4} \]