Categorical Logic
Syllogisms

Definitions:

Syllogism - a deductive argument composed of exactly two premises and one conclusion.

Categorical Syllogism - a syllogism composed of *categorical propositions* with exactly three distinct terms.

I. The Parts of a Categorical Syllogism -

A. The **Major Term** - the *predicate* term of the conclusion
B. The **Minor Term** - the *subject* term of the conclusion

P1) - All mammals are **animals with hearts**.

P2 - All **dogs** are mammals.

C) - All **dogs** are **animals with hearts**.

minor term *major term*
I. The Parts of a Categorical Syllogism -

A. The **Major Term** - the *Predicate* of the conclusion

B. The **Minor Term** - the *Subject* of the conclusion

C. The **Middle Term** - the term *repeated* in the premises, but *not* in the conclusion.

P1) - All *mammals* are animals with hearts.

P2) - All dogs are *mammals*.

C) - All dogs are animals with hearts.
Categorical Logic
Syllogisms

I. The Parts of a Categorical Syllogism -

A. The **Major Term** - the *P*redicate of the conclusion

B. The **Minor Term** - the *S*ubject of the conclusion

C. The **Middle Term** - the term **repeated** in the premises, but **not** in the conclusion.

D. The **Major Premise** - the premise that contains the major term

E. The **Minor Premise** - the premise that contains the minor term

Major Premise All *mammals* are *animals with hearts*.

Minor Premise All *dogs* are *mammals*.
All *dogs* are *animals with hearts*.
II. **The Mood** of a Categorical Syllogism - the letters of the three propositions that compose the syllogism.

All mammals are animals with hearts.
All dogs are mammals.
All dogs are animals with hearts.

No mammals are animals with hearts.
All dogs are mammals.
No dogs are animals with hearts.

Some mammals are animals with hearts.
All dogs are mammals.
Some dogs are animals with hearts.

4\(^3\) = 64 possible moods
III. The **Figure** of the Categorical Syllogism - the *location of the middle term* in the major and minor premises

Figure 1
\[
\begin{align*}
&M \text{ are } P. & \text{All *mammals* are animals with hearts.} \\
&S \text{ are } M. & \text{All dogs are *mammals*.} \\
&S \text{ are } P. & \text{All dogs are animals with hearts.}
\end{align*}
\]

Figure 2
\[
\begin{align*}
&P \text{ are } M. & \text{All animals with hearts are *mammals*.} \\
&S \text{ are } M. & \text{All dogs are *mammals*.} \\
&S \text{ are } P. & \text{All dogs are animals with hearts.}
\end{align*}
\]
III. The Figure of the Categorical Syllogism - the location of the middle term in the major and minor premises

Figure 3

- M are P.
 All *mammals* are animals with hearts.
- M are S.
 All *mammals* are dogs.
- S are P.
 All dogs are animals with hearts.

Figure 4

- P are M.
 All animals with hearts are *mammals*.
- M are S.
 All *mammals* are dogs.
- S are P.
 All dogs are animals with hearts.
III. The Figure of the Categorical Syllogism - the location of the middle term in the major and minor premises

<table>
<thead>
<tr>
<th>Figure 1</th>
<th>Figure 2</th>
</tr>
</thead>
</table>
| M are P.
S are M.
S are P. | P are M.
S are M.
S are P. |

<table>
<thead>
<tr>
<th>Figure 3</th>
<th>Figure 4</th>
</tr>
</thead>
</table>
| M are P.
M are S.
S are P. | P are M.
M are S.
S are P. |
III. The **Figure** of the Categorical Syllogism - the *location of the middle term* in the major and minor premises

<table>
<thead>
<tr>
<th>Figure</th>
<th>Major Premise</th>
<th>Minor Premise</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>M are P.</td>
<td>S are M.</td>
<td>S are P.</td>
</tr>
<tr>
<td>2</td>
<td>P are M.</td>
<td>S are M.</td>
<td>S are P.</td>
</tr>
<tr>
<td>3</td>
<td>M are P.</td>
<td>M are S.</td>
<td>P are M.</td>
</tr>
<tr>
<td>4</td>
<td>M are P.</td>
<td>M are S.</td>
<td>M are S.</td>
</tr>
</tbody>
</table>

4 figures

4 figures \(\times \) 64 moods = 256 categorical syllogisms
AAA-1

All M are P.
All S are M.
All S are P.
AAA-1

All M are P. ✓
All S are M.
All S are P.
AAA-1

All M are P. ✓
All S are M. ✓
All S are P.

Valid
EIO-2

No P are M.
Some S are M.
Some S are not P.

NOTE: always start with universal premises.
EIO-2

No P are M. ✓
Some S are M.
Some S are not P.
Categorical Logic
Syllogisms

EIO-2

No P are M. ✓
Some S are M. ✓
Some S are not P.

Valid
IV. The Fallacies of Categorical Syllogisms - the five ways a categorical syllogism can fail

A. Undistributed Middle Term - the middle term of a categorical syllogism must be distributed at least once.

All dogs are mammals.

AAA-2

All cats are mammals.

Therefore, all cats are dogs
All dogs are *mammals*.
Categorical Logic
Syllogisms

AAA-2

Invalid

All cats are mammals.

All dogs are mammals.

All cats are dogs?
IV. The Fallacies of Categorical Syllogisms - the five ways a categorical syllogism can fail

A. Undistributed Middle Term - the middle term of a categorical syllogism must be distributed \textit{at least once.}

B. Illicit Major/Minor Term - if a term is distributed in the conclusion, it \textit{must} be distributed in its premise.

All dogs are \textit{mammals.}
Some cats are not dogs.
Therefore, some cats are \textit{not mammals.}

AOO-1
Categorical Logic

Syllogisms

AOO-1

Invalid

Some cats are not dogs.

All dogs are mammals.

Some cats are not mammals?
IV. The Fallacies of Categorical Syllogisms - the five ways a categorical syllogism can fail:

A. Undistributed Middle Term - the middle term of a categorical syllogism must be distributed *at least once*.

B. Illicit Major/Minor Term - if a term is distributed in the conclusion, it *must* be distributed in the premise.

C. Exclusive Premises - A categorical syllogism *cannot* have two negative premises.

No fish are birds.
Some parrots are *not* fish.
Therefore, some parrots are not birds.
No fish are birds.
Some parrots are *not* fish.

No fish are birds.

EOO-1

Invalid

Some parrots are *not* birds?
The Fallacies of Categorical Syllogisms - the five ways a categorical syllogism can fail:

A. **Undistributed Middle Term** - the middle term of a categorical syllogism must be distributed *at least once*.

B. **Illicit Major/Minor Term** - if a term is distributed in the conclusion, it *must* be distributed in the premise.

C. **Exclusive Premises** - A categorical syllogism cannot have two negative premises.

D. **Losing the Negative** - A negative premise requires a negative conclusion (and a negative conclusion requires a

\[\text{No fish are birds.} \]

EII-1

Some parrots are fish.

Therefore, some parrots are birds.
Categorical Logic
Syllogisms

EII-1
No fish are birds.
Categorical Logic
Syllogisms

EII-1

Invalid

Some parrots are fish.

No fish are birds.

Some parrots are birds?
IV. The Fallacies of Categorical Syllogisms - the five ways a categorical syllogism can fail:

A. Undistributed Middle Term - the middle term of a categorical syllogism must be distributed at least once.

B. Illicit Major/Minor Term - if a term is distributed in the conclusion, it must be distributed in the premise.

C. Exclusive Premises - A categorical syllogism cannot have two negative premises.

D. Losing the Negative - A negative premise requires a negative conclusion (and a negative conclusion requires a negative premise).

E. Existential Fallacy* - A particular conclusion cannot be derived from two universal premises.
Categorical Logic

Syllogisms

V. The **Valid** Categorical Syllogisms - 24 Valid syllogisms:

Unconditionally Valid: 15

<table>
<thead>
<tr>
<th>Figure 1</th>
<th>Figure 2</th>
<th>Figure 3</th>
<th>Figure 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAA</td>
<td>EAE</td>
<td>IAI</td>
<td>AEE</td>
</tr>
<tr>
<td>EAE</td>
<td>AEE</td>
<td>AII</td>
<td>IAI</td>
</tr>
<tr>
<td>AII</td>
<td>EIO</td>
<td>OAO</td>
<td>EIO</td>
</tr>
<tr>
<td>EIO</td>
<td>AOO</td>
<td>EIO</td>
<td></td>
</tr>
</tbody>
</table>

Conditionally Valid: 9

<table>
<thead>
<tr>
<th>Figure 1</th>
<th>Figure 2</th>
<th>Figure 3</th>
<th>Figure 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAI</td>
<td>AEO</td>
<td>AEO</td>
<td></td>
</tr>
<tr>
<td>EAO</td>
<td>EAO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AAI</td>
<td>EAO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EAO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AAI</td>
</tr>
</tbody>
</table>